
Parallelization Improvements to BoxLib
Applications with Tiling and OpenMP

Jessica Kawana ▪ Willamette University ▪ Center for Computational Sciences and Engineering

BoxLib Tiling vs Loop Level Weak Scaling Results

Loop Level OpenMP

Tiling

▪ Parallelization by region,
i.e. “tiles”, instead of
loop iteration

▪ Occurs at a “higher level” in
the code
▫ Parallelism starts before

call to subroutine
▫ Loops within subroutine

adjusted to bounds of tile

!$omp parallel do private(i)

do j = 1, 16

 do i = 1, 16

 // work happens

 end do

end do

!$omp end parallel do

 Include OpenMP directives around work loops
 Splits up loop iterations over different threads

to be done in parallel

do j = 1, 4

 do i = 1, 16

 // work happens

 end do

end do

do j = 5, 8

 do i = 1, 16

 // work happens

 end do

end do

do j = 9, 12

 do i = 1, 16

 // work happens

 end do

end do

do j = 13, 16

 do i = 1, 16

 // work happens

 end do

end do

Advantages of Tiling

▪ Customize tile size to fit in cache
▫ Reduces cache misses due to data locality

▪ Tiling enables better load balancing on
architectures with the ability to spawn very large
numbers of threads

!$omp parallel

loop over tiles

 get tile box

 call workHappens(tlo,thi)

end loop

!$omp end parallel

Psuedocode example

Heat Equation Example Speedup on a Babbage Node

Acknowledgments

I would like to thank my mentor Andy Nonaka,
group leader Ann Almgren and the other members
of CCSE who helped me throughout the summer

FluctHydro (a multi-component flow solver)
Subroutine Speed-up on a Babbage Node

Discussion and Conclusions

▪ Addition of tiling constructs in combination with
OpenMP is more effective than loop level OpenMP

▪ These hybrid parallelization techniques with tiling are
projected to work efficiently on next generation
architectures

▪ Simpler codes such as the heat equation example
experience larger gains but production codes such as
FluctHydro also show improvement

▪ Speed-up due to tiling is related to problem size, tile
size, and the nature of the subroutine

▪ Further research may be done to characterize the
relation of these factors on various codes

*Speedup is in relation to single thread loop level runtimes

FluctHydro Weak Scaling on Edison

• Through profiling of FluctHydro, bottlenecks were
identified and removed for better MPI scaling

• Code now scales ~50k processors with MPI + OpenMP

▪ Software framework for
massively parallel
structured grid PDE
simulations

▪ Implemented as
layered C++ / Fortran

▪ My work involved
implementing hybrid
parallelism:
MPI + OpenMP

